Injectivity Radius of Lorentzian Manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injectivity Radius of Lorentzian Manifolds

Motivated by the application to spacetimes of general relativity we investigate the geometry and regularity of Lorentzianmanifolds under certain curvature and volume bounds. We establish several injectivity radius estimates at a point or on the past null cone of a point. Our estimates are entirely local and geometric, and are formulated via a reference Riemannian metric that we canonically asso...

متن کامل

Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature

We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of ...

متن کامل

Injectivity Radius and Fundamental Groups of Hyperbolic 3-manifolds

It is shown that for each integer n > 1 there exists a constant Rn > 0 such that if M is a closed hyperbolic 3-manifold with Rank π1(M) = n, then the injectivity radius of M is bounded above by Rn.

متن کامل

Curvature and Injectivity Radius Estimates for Einstein 4-manifolds

It is of fundamental interest to study the geometric and analytic properties of compact Einstein manifolds and their moduli. In dimension 2 these problems are well understood. A 2-dimensional Einstein manifold, (M, g), has constant curvature, which after normalization, can be taken to be −1, 0 or 1. Thus, (M, g) is the quotient of a space form and the metric, g, is completely determined by the ...

متن کامل

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2008

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-008-0412-x